M1. (a) (i) $\Delta H=\Sigma$ bonds broken $-\Sigma$ bonds formed

$$
=944 / 2+3 / 2 \times 436-3 \times 388
$$

$=-38\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$
ignore units even if incorrect correct answer scores 3
-76 scores $2 / 3$
+38 scores $1 / 3$
1
(ii) mean / average bond enthalpies are from a range of compounds or mean / average bond enthalpies differ from those in a single compound / ammonia
(b) $\Delta S=\Sigma S$ products $-\Sigma S$ reactants
$=193-(192 / 2+131 \times 3 / 2)$
$=-99.5 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$
units essential for M3 correct answer with units scores 3 $-199 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1} \&-99.5$ score $2 / 3$ -199 and $+99.5 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$ score $1 / 3$
(c) (i) $\Delta G=\Delta H-T \Delta S=-46+800 \times 99.5 / 1000$ mark is for putting in numbers with 1000 if factor of 1000 used incorrectly $C E=0$
$=33.6$ or 33600
allow 33 to 34 (or 33000 to 34000)
$\mathrm{kJ} \mathrm{mol}^{-1}$ with $\mathrm{J} \mathrm{mol}^{-1}$ correct units for answer essential

Page 2
if answer to part (b) is wrong or if -112 used, mark consequentially e.g.

- -199 gives 113 to $114 \mathrm{~kJ} \mathrm{~mol}^{-1}$ (scores 3/3)
- -112 gives 43 to $44 \mathrm{~kJ} \mathrm{~mol}^{-1}$ (scores $3 / 3$)
(ii) If answer to (c) (i) is positive: not feasible / not spontaneous

If answer to (c) (i) is negative: feasible / spontaneous if no answer to (c) (i) award zero marks

M2. (a) Three conditions in any order for M1 to M3

M1 yeast or zymase

M2 $\quad 30^{\circ} \mathrm{C} \geq \mathrm{T} \leq 42^{\circ} \mathrm{C}$
M3 anaerobic/no oxygen/no air OR neutral pH
M4 $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6} \longrightarrow 2 \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}+2 \mathrm{CO}_{2}$
OR
$2 \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6} \longrightarrow 4 \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}+4 \mathrm{CO}_{2}$ Mark independently Penalise "bacteria" and "phosphoric acid" using the list principle
Ignore reference to "aqueous" or "water" (i.e. not part of the list principle)
Or other multiples
(b) M1 Carbon-neutral

Ignore "biofuel"

M2 6 ($\mathrm{mol} / \mathrm{molecules}$) $\mathrm{CO}_{2} /$ carbon dioxide taken in/used/used up (to form glucose or in photosynthesis)

M3 $\underline{6 \text { (} \mathrm{mol} / \mathrm{molecules} \text {) } \mathrm{CO}_{2} / \text { carbon dioxide given out due to }}$

2 ($\mathrm{mol} / \mathrm{molecules}$) $\mathrm{CO}_{2} /$ carbon dioxide from fermentation/
Process 2 and 4 ($\mathrm{mol} /$ molecules) $\mathrm{CO}_{2} /$ carbon dioxide from combustion/Process 3

It is NOT sufficient in M2 and M3 for equations alone without commentary or annotation or calculation
(c) M1 (could be scored by a correct mathematical expression)
(Sum of) $\underline{\text { bonds broken }-(S u m ~ o f) ~ b o n d s ~ m a d e / f o r m e d ~}=\Delta H$
OR
$(\Sigma) \underline{B}_{\text {racatans }}-(\Sigma) B_{\text {porocutes }}=\Delta H$
(where $B=\underline{\text { bond }}$ enthalpy/bond energy) For M1 there must be a correct mathematical expression using ΔH or "enthalpy change"

M2 Reactants $=(+) \underline{4719}$
OR
Products $=(-) \underline{5750}$

M3 Overall $+4719-5750=-1031\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$ (This is worth 3 marks)
Award full marks for correct answer.
Ignore units.
M2 is for either value underlined
M3 is NOT consequential on M2

Award 1 mark ONLY for +1031

Candidates may use a cycle and gain full marks.
M4 Mean bond enthalpies are not specific for this reaction $O R$ they are average values from many different compounds/molecules

Do not forget to award this mark
(d) M1 $\mathrm{q}=\mathrm{mc} \Delta \mathrm{T}$ (this mark for correct mathematical formula)

M2 $=6688$ (J) OR 6.688 (kJ) OR 6.69 (kJ) OR 6.7 (kJ)
M3 $\quad 0.46 \mathrm{~g}$ is 0.01 mol
therefore $\Delta \mathrm{H}=\underline{\mathbf{- 6 6 9}} \mathrm{kJ} \mathrm{mol}^{-1} \mathrm{OR} \underline{\underline{\mathbf{6 7 0}}} \mathrm{kJmol}^{-1}$

OR $\underline{-668.8} \mathrm{~kJ} \mathrm{~mol}^{-1}$
Award M1, M2 and M3 for correct answer to the calculation Penalise M3 ONLY if correct answer but sign is incorrect In M1, do not penalise incorrect cases in the formula If $m=0.46$ or $m=200.46$ OR if $\Delta T=281, C E$ and penalise M2 and M3
If $c=4.81$ (leads to 7696) penalise M2 ONLY and mark on for M3 $=-769.6$ OR -770
Ignore incorrect units in M2
M4 Incomplete combustion
Do not forget to award this mark. Mark independently

M3. (a) (i) Reducing agent
OR
Reduce(s) $\left(\mathrm{WO}_{3} /\right.$ tungsten oxide $)$
OR
electron donor
OR
to remove oxygen (from $\mathrm{WO}_{3} /$ tungsten oxide or to form water);
(ii) $\mathrm{WO}_{3}+3 \mathrm{H}_{2} \rightarrow \mathrm{~W}+3 \mathrm{H}_{2} \mathrm{O}$

Or multiples
1
(iii) One from
H_{2} is

- explosive
- flammable or inflammable
- easily ignited Ignore reference to pressure or temperature
(b) (i) Addition

Ignore "electrophilic"
Penalise "nucleophilic addition"

OR

(catalytic) hydrogenation
OR
Reduction
(ii) Geometric(al)

OR
cis/trans OR E Z OR E/Z
(c) (i) (If any factor is changed which affects an equilibrium), the position of equilibrium will shift/move/change/respond/act so as to oppose the change.

OR

(When a system/reaction in equilibrium is disturbed), the equilibrium shifts/moves in a direction which tends to reduce the disturbance

A variety of wording will be seen here and the key part is the last phrase and must refer to movement of the equilibrium. QoL
(ii) M1 - Statement of number of moles/molecules

There are more moles/molecules (of gas) on the left/of reactants

OR

fewer moles/molecules (of gas) on the right./products
OR
there are 4 moles/molecules (of gas) on the left and 2 moles/ molecules on the right.

Ignore "volumes" for M1
Mark independently
M2 - Explanation of response/movement in terms of pressure Increase in pressure is opposed (or words to that effect)

OR

pressure is lowered by a shift in the equilibrium (from left) to right/favours forward reaction.
(d) $\quad \Sigma \mathrm{B}($ reactants $)-\Sigma \mathrm{B}($ products $)=\Delta H($ M1 $)$

OR
Sum of bonds broken - $\underline{\text { Sum }}$ of bonds formed $=\Delta H(M 1)$
$\mathrm{B}(\mathrm{H}-\mathrm{H})+1 / 2 \mathrm{~B}(\mathrm{O}=\mathrm{O})-2 \mathrm{~B}(\mathrm{O}-\mathrm{H})=-242(\mathrm{M} 1)$
$B(H-H)=-242-1 / 2(+496)+2(+463)$ (this scores M1 and M2)
$\mathrm{B}(\mathrm{H}-\mathrm{H})=(+) \underline{436}\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)(\mathrm{M} 3)$
Award 1 mark for - 436
Candidates may use a cycle and gain full marks.
M1 could stand alone
Award full marks for correct answer.
Ignore units.
Two marks can score with an arithmetic error in the working.

M4. (a) Equation $1 / 2 \mathrm{~N}_{2}+3 / 2 \mathrm{H}_{2} \rightarrow \mathrm{NH}_{3}$

$$
\Delta H f=[(945 \times 0.5)+(426 \times 1.5)]-(391 \times 3)
$$

$=-46.5 \mathrm{~kJ} \mathrm{~mol}^{-1}$

Mark Range	The marking scheme for this part of the question includes an overall assessment for the Quality of Written Communication (QWC). There are no discrete marks for the assessment of QWC but the candidates' QWC in this answer will be one of the criteria used to assign a level and award the marks for this part of the question Descriptor
an answer will be expected to meet most of the criteria in the level	
descriptor	

(b) The higher the temperature the faster the reaction QWC
but, since the reaction is exothermic
the equilibrium yield is lower QWC

The higher the pressure the greater the equilibrium yield QWC
because there is a reduction in the number of moles of gas in the reaction
but higher pressure is expensive to produce or plant is more expensive to build QWC

A better catalyst would lessen the time to reach equilibrium
and allow more ammonia to be produced in a given time QWC

